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Abstract 

Two algorithms were developed which utilized multi-sensor analysis techniques to complement the 
current Space Shuttle Main Engine (SSME) safety monitoring system. The first algorithm analyzed 
the accumulative error between actual and predicted values of the engine parameter set, while the 
second algorithm combined these error terms into a response pattern and correlated each pattern 
with a standard pattern. These algorithms were applied to  twelve SSME anomalous test firings 
and were found to produce improved failure detection times in eight of those twelve compared to  
the current engine safety monitoring system. Of the eight detected anomalous test firings, the first 
algorithm detected all eight, while the second algorithm detected seven of the eight. No false alarms 
were indicated by either algorithm for twelve nominal test firings. An initial parametric study of 
these algorithms for optimized parameter selection is presented and algorithm robustness to sensor 
failure is demonstrated. 

Nomenclature 

Accumulative Difference Detection 
Autoregressive Moving Average 
Linear Coefficients 
Covariance Function 
Normalized Difference Value 
Engine Error Value 
Health Management System for Rocket 
Engines 
High Pressure Fuel Pump 
High Pressure Fuel Turbine 
High Pressure Fuel TurboPump 
High Pressure Oxidizer Turbine 
Liquid Oxygen 
Low Pressure Fuel Pump 
Low Pressure Oxidizer Pump 

MCC 
P 

PBM 
PBP 
PID 

RPL 

SAFD 

SD 
SSME 
ZTO 

P(t)  

R(t) 

S(t)  

Main Combustion Chamber 
Predicted Value of Sensor 
Normalized Difference Pattern 
Power Balance Model 
Preburner Boost Pump 
Parameter Identification number 
Correlation Coefficient 
Rated Power Level 
Actual Sensor Value 
System for Anomaly and Failure 
Detection 
Standard Deviation Function 
Space Shuttle Main Engine 
Zero Template with Offset term 

Introduction 

An analytical investigation was conducted to develop new failure deiection algorithms which provide 
additional capabilities to the current state of rocket engine safety monitoring. These new a.lgoritlims 
must have the ability to  analyze the engine’s data  and detect anomalous engine behavior in real- 
time. They must also minimize the possibility of false alarms, while a t  the same time provide 
enough advance warning to enable the controller to halt engine operation and prevent further engine 
damage. 

Current efforts in the advancement of safety monitoring technology are focused upon the Space 
Shuttle Main Engine (SSME), because it is an operational, reuseable rocket engine that has had 
testing failures resulting in major engine damage. The current SSME safety monitoring system 
applies a limited detection package to a small set of conventional sensors. This package analyzes 



five parameters individually and indicates imminent engine failure based upon hardware limitations. 
Often when these limitations are exceeded, the ability to minimize the damage to the engine has 
been lost. 

Over 1300 hot-fire test have been conducted for the SSME since 1976. Despite the current monitoring 
package, reference 1 reported forty tests resulted in damage, cost and time delay effects due to 
engine anomalies. Cikanek’s investigations, references 2 and 3, classify twenty-seven of these forty 
anomalies as major incidents resulting in substantial hardware damage and loss. Also reported in 
reference 3, from 1976-1984 the current controller initiated over 200 engine cutoffs that were a result 
of false alarms. The purpose of this investigation was to develop failure detection algorithms which 
complement the current SSME safety monitoring system without indicating additional false alarms. 

Recently, a number of investigations have been conducted to apply various detection algorithms to 
SSME test stand data. Some techniques analyze the response from single sensor outputs, while 
others utilize a collage of sensor data. Single sensor techniques allow for better detection of failure 
modes that manifest themselves in a few sensors. However, multi-sensor techniques are sensitive to 
failure modes that cause small deviations in a number of performance sensors. 

Examples of applied single sensor techniques are the ARMA algorithm reported in reference 4 and, 
the SAFD algorithm reported in references 1 and 5 .  The Autoregressive Moving Average (ARMA) 
algorithm utilized time series analysis techniques, while the System for Anomaly and Failure De- 
tection (SAFD) scheme utilized a two-second moving average of the data. Other approaches, ref- 
erences 4 and 6, combined sensor information in order to detect an anomalous engine response. In 
reference 4, researchers correlated engine response patterns, while researchers in reference 6, applied 
an accumulative error approach in the Health Management System for Rocket Engines (HMSRE) 
algorithm. 

Rocket engine failure modes can be classified into two groups dependent upon the available prelim- 
inary indications to  failure. One group has the characteristic that there is little or no indication 
prior to actual failure. It includes failures, such as duct rupture and some turbine blade failure 
modes. The other group has precursor information, distributed throughout the system and reflected 
by changes in system performance. For these failures, earlier detection would allow the controller 
to  interrupt the failure mode and thus reduce further engine damage. The multi-sensor techniques 
are capable of detecting precursory information of this type, therefore their incorporation into a 
monitoring system would provide improved rocket engine safety. 

The reported investigation was begun, following a review of the multi-sensor algorithms reported in 
recent SSME health management framework studies, references 4 and 6, conducted through NASA 
Lewis Research Center. The two algorithms developed for this report utilize the multi-sensor analysis 
techniques presented in those studies. This investigation expands upon those studies by addressing 
implementation issues of the techniques, such as sensor set optimization, sensor failure robustness 
and establishment of detection limits. The first algorithm analyzes the accumulative error between 
actual and predicted values of the engine sensor set, while the second algorithm combines these error 
terms into a response pattern and correlates each pattern with a standard pattern. The evaluation 
of these algorithms was based upon SSME test data; 12 nominal tests and 12 tests containing failure 
data. 

Algorithm Development 

Both algorithms developed in this investigation provided detection only during steady statr  engiiir 
operation. Every 40 milliseconds, each sensor in the data  set was compared to a nominal sl.nnd:irtl 
value of that sensor for the given operating conditions. Twenty-four sensors were selected for analysis. 
These sensors are currently available to the SSME controller and are predicted by the Power Balance 
Model (PBM). The SSME PBM was used to calculate the nominal standard values for each sensor 
at various operating power levels. The other operating conditions, such as the fuel and oxidizer inlet 
conditions, were held constant for the PBM simulation, because i ~ s  reported in reference 4,  they 
have much less effect upon the sensors. Polynomial regression models were then developed for each 
sensor to provide a curve fitting of the PBM data as a function of commanded engine power level. 
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After analysis of the data, the low pressure oxidizer pump (LPOP) discharge pressure and the 
high pressure oxidizer turbine (HPOT) discharge temperature were eliminated from the sensor test 
sets due to their variations during the liquid oxygen (LOX) venting procedure. This procedure is 
regulated by human operators and its occurrence depends upon the test objectives. The regression 
models used in this investigation were unable to predict the effects due to LOX venting. The low 
pressure fuel pump (LPFP) discharge pressure parameter was also deleted from the test sets due to 
extreme unsteadiness of the values during constant power-level engine operation. 

The eighteen remaining sensors were separated into fuel-side and LOX-side performance sensor sets 
as shown in Table 1. Each sensor set also contained the controller reference main combustion chamber 
(MCC) pressure which was  used by the algorithms to  determine the current operating conditions. 
The preburner boost pump (PBP) discharge pressure was included in both sets, because this sensor 
measured the oxidizer pressure supplied to both the fuel and oxidizer preburners. Each sensor set 
was analyzed by both algorithms, along with a total sensor set that contained all eighteen sensors. 

Data Processing 

Development of the algorithms involved normalizing SSME test sensor data to merge diverse engine 
information. This allowed diverse sensors that vary in magnitude and type of measured quantity, 
to be incorporated together in a single algorithm. In equation form, the processing of the data  set 
amears  as, 

(1) 

where D(t)i is the normalized difference value, S(t); is the actual sensor value a t  time t and P, is 
the predicted value for sensor i. Using equation (1) eliminates the nominal predicted element from 
the sensor information, and the normalized real effect elements remain. 

Accumulative Difference Detection Algorithm 

The first algorithm evaluated involved detection based upon the magnitude of the normalized error 
values from equation (1). This algorithm was applied during constant power-level regions of the 
engine’s test profile. The main feature of this algorithm is it’s capability of detecting engine failure 
modes that manifest themselves as small magnitude changes in a number of performance parameters. 

For an ideal case, the regression models would predict the system exactly and the normalized differ- 
ence values would be zero throughout the test firing. From actual nominal test firings, the normalized 
difference values were nonzero values that maintained a relatively constant mean throughout a con- 
stant power-level region, but shifted slightly through the test profile due to power-level changes. The 
deviations about the mean values during constant power regions were due primarily to noise and 
controller responses, while the nonzero mean values are a result of engine-to-engine build variations. 

The primary reason for the mean shifts at the various power levels is that the operating conditions 
were not consistent. For example, the calibration curve for the fuel flowmeter is nonlinear and the 
controller is currently capable of handling only linear functions. This results in the fuel flowmeter 
being optimized for a particular operating power level of the engine. Therefore while the engine 
controller is attempting to maintain the engine a t  a constant mixture ratio, it is in fact controlling 
the engine at different mixture ratio points due to p w e r  changes. More sophisticated regression 
models, that include other variables such as mixture ratio, would further reduce these shifts in the 
error terms. 

For the Accumulative Difference Detection (ADD) algorithm, the normalized difference values for 
the entire set of parameters were linearly summed together, in order to produce an overall engine 
error value, 

n 

%=I 

where E(t) is the engine error value, n is the number of parameters in the set and D(t); is computed by 
equation 1. The linear coefficients, ai, were set at one, but can be varied to optimiee the algorithm’s 
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performance by emphasizing key parameters. 
nominal range of the engine error value was between 0.6 and -0.6. 

For nominal engine tests, the overall engine error values contained significant fluctuations. A five- 
point average scheme was incorporated in the ADD algorithm to reduce this variation. This scheme 
collected five consecutive engine error values and averaged them into a single engine error value. 
This allowed a refinement of the tolerances and an improvement in the detection capabilities. 

Zero Template Algorithm 

For the second approach, the set of normalized difference values were compared to  a nominal set by 
using the correlation technique. This technique discussed in references 7 and 8, measures the strength 
of the relationship between the data sets. The normalized difference values found in equation (1) 
for each sensor was arranged in a specific order for each data set. Each ordered set of data  values 
is called a pattern. These patterns were developed every 40 milliseconds and were compared to a 
nominal standard pattern. The degree of correlation between the two patterns was determined by 
the correlation coefficient. This term was determined by 

For the combination of sensor data  utilized, the 

where R(t);j is the correlation coefficient between the pattern at  time ti, P(t); and the pattern at  
time t j ,  P(t)j. The functions, Cov and SD, are defined as the covariance and the standard deviation 
functions of the patterns, respectively. The values of the correlation coefficient range from 1 to  0, 
with 1 representing a perfect matching of the two patterns and values less than 1 representing the 
degree of deviation between the two patterns. 

For the ideal case, when the regression models exactly predict the actual engine data  (D(t)i = 0), 
normalized difference patterns should be correlated with a zero or null standard pattern. The 
difficulty is that correlation with any horizontal straight-line pattern results in a zero standard 
deviation for that pattern, and hence creates an undefined correlation coefficient. 

An attempted solution to this problem was to develop a near-zero pattern or template for correlation. 
The nominal templates were established by averaging templates from constant power-level regions 
of a nominal test firing. Figure 1 shows the nominal template for the 100% rated power level (RPL) 
taken from test firing 902-463. Due to the ability of the PBM to closely model nominal engine 
operation, the normalized difference values have an order of magnitude of -2. The difficulty with 
this approach was that the algorithm was too sensitive to small nominal deviations in the normalized 
difference values due to noise, engine build, etc. 

Another solution undertaken combined a zero template with an additional parameter offset. The 
additional parameter selected was the controller reference MCC pressure. This parameter is constant 
throughout stationary engine operation, never experiences failure and is available in every controller 
data  set. A regression model was developed to predict an offset value for this parameter as a 
function of engine power level. Figure 2 shows the distribution of the normalized difference value for 
the nominal template at 100% RPL. When added to the  pattern, this new error term allowed the zero 
template to  be correlated, while a t  the same time it did not contribute to the correlation process. 
The magnitude of the offset term strongly influenced the sensitivity of the algorithm to pa.ttern 
changes. Large magnitudes, greater than 0.5, made the normalized difference values, evaluated in 
equation ( l), insignificant and skewed the correlation coefficients to 1. Small magnitudes, less than 
0.1, placed the algorithm into the same situation as the near-zero pattern approach. A magnitude of 
approximately 0.3 was selected. This allowed the algorithm to be insensitive to nominal deviations 
and yet capable of detecting the failure information. Figure 3 shows the consistent behavior of the 
correlation coefficient when this approach was applied to  nominal test firing 902-457. 

This modification allowed this technique to become a feasible detection algorithm. The Zero Tem- 
plate Offset (ZTO) algorithm can be applied only during the constant power-level region of the 
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engine’s operation profile. This algorithm quantified the relationship between the standard and ac- 
tual normalized error value patterns into an overall engine condition value defined as the correlation 
coefficient. 

Failure Detection Limit Development 

The test data  available for this investigation was from both phase I and phase I1 configurations of 
the SSME. The phase I1 engine provided performance improvements to  the phase I engine design. 
The available nominal test data came from phase I1 test firings, while the available test failures were 
earlier in the testing program from the phase I engine design. 

In order to develop detection limits for the two different phase engines, relative rather than absolute 
limits were established. During the first two seconds of steady state operation, each algorithm 
calculates a two second average of it’s respective engine values for that particular test firing. This 
two second average is then established as a baseline about which the detection limits can be placed. 

The detection limits were found by first evaluating ADD’S and ZTO’s overall engine value ranges 
for five nominal test cases and selecting the maximum range for each algorithm for each sensor set. 
These maximum ranges were then placed about the baseline value for each subsequent test firing. 
These limits were then tested upon the remaining nominal test cases to ensure no false-alarms 
from the algorithms. Once the detection limits were confirmed, the algorithms were applied to the 
failed test cases in order to establish detection times. The detection criteria for the ADD and ZTO 
algorithms were based upon one and five consecutive values, respectively, exceeding the established 
limits. 

The development of relative detection limits made the ADD and ZTO algorithms insensitive to 
engine failures that manifest themselves only during the startup period. In order to  compensate 
for some of the lost sensitivity, overall limits of *1 for the ADD algorithm and 0.5 for the ZTO 
aigorithm were established. This enabled the algorithms to detect gross indications of engine failure 
that are initiated during startup, but do not propagate through the remainder of the test profile. 

Results and Discussion 

The detection capabilities for each algorithm were evaluated by applying the algorithms to  twelve 
SSME test firings that resulted in major engine damage. The number of available sensors for each 
test firing varied due to  sensor failures and measurements not taken. The validation of sensor data 
prior to  analysis is important for both algorithms. This ensures that the detections made by the 
algorithms are based upon reliable data. A listing of the unavailable sensors for the failed SSME 
test firings is presented in Table 2. Some tests, such as 901-173, had 25% to  50% of the applied 
sensors unavailable for the algorithms to utilize. 

The detection times of the ADD and ZTO algorithms are presented in Table 3, along with the 
detection limits used and the actual SSME redline cutoff times for each test firing. In some cases 
the number of unavailable sensors made the sensor set so small that multi-sensor schemes were 
unapplicable. This condition occurred exclusively with the LOX-side sensor set which had only six 
performance sensors. For either algorithm to be applied to a particular sensor set, a t  least three 
sensors had to be available, excluding the controller reference MCC pressure. For test firings where 
the algorithms were not applied the detection time is designated in Table 3 by ‘xxx’. An omission 
of detection time from Table 3, indicates that the algorithms did not detect the anomaly before the 
current SSME redline system. 

The ADD and ZTO algorithms were able to provide improved detection capability for 8 of the 12 
failure test cases. These algorithms demonstrated the ability of detecting the failures, not only by 
their major impact to the system, but by the subtle degradations that the onset of failure can cause. 
The four failures not detected by these algorithms, 750-168,902-198,901-225 and 750-259, contained 
failure modes that provided no precursory informa.tion or occurred within two to  three seconds after 
engine startup. Post-test summaries of the remaining eight detected anomalous test cases, 901-284, 
901-173, 901-331, 902-249, 901-307, 901-340, 901-364 and 901-436 were extracted from references 1 
and 4. 
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According to  the post-test reports for test firing 901-284, the MCC pressure transducer become 
dislodged and began sensing the coolant liner pressure at  k 3 . 9  seconds. The controller attempted 
to maintain the chamber pressure based upon the coolant pressure, which caused severe anomalous 
operation. The failure was a direct result of a failed controlled sensor and was detected by the ADD 
algorithm as shown in Figure 4, but not by the ZTO algorithm. The ADD algorithm detected this 
failure mode due to the engine error value exceeding the overall limit a t  8.14 seconds after engine 
start. This failure mode is a controller-type failure where the engine was responding correctly to  
the contoller, but controller was issuing commands to the engine based upon faulty input sensor 
information. The magnitude of the anomalous engine performance was detectable, but no failure 
indication was  available from the analysis of the sensor interrelationships. This result was expected, 
because although the engine was operating off-nominal, the engine, itself, was responding properly 
with the controller. 

During test firings 901-173 and 901-331, the SSME experienced fracturing of the LOX posts in the 
main injector. Controller shutdown was initiated by high pressure turbine discharge temperature 
redlines a t  201.16seconds for test 901-173 and 233.14seconds for test 901-331. Once failure occurred, 
the controller attempted to  increase the oxidizer flow in order to  maintain the engine’s power level. 
This condition required several performance parameters to  operate a t  points outside of their normal 
position, in relation to  the other parameters. From the ADD application shown in Figures 5 and 6 
for the fuel-side sensor set, both cases exhibited degrading engine error values during constant 
power-level operation. This was also reflected in pattern variations calculated from ZTO, Figures 7 
and 8, for the fuel-side and total sensor sets respectively. The detection times made by both of these 
algorithms were done even though test 901-173 had 10 unavailable sensors, and for both tests, the 
high pressure fuel turbine (HPFT) discharge temperatures were unavailable. The ADD algorithm 
provided only slight improvements to the detection times of 184.12 seconds for test 901-173 and 
232.80 seconds for 901-331. The ZTO algorithm provided failure detection times of 75.0 seconds for 
test 901-173 using either the fuel-side or total sensor set, while for test firing 901-331, ZTO’s earliest 
failure detection time was a t  64.56 seconds for the total sensor set. 

For test 902-249, HPFT blade failure caused premature test shutdown due to accelerometer redline. 
According to the post-test analysis, the initial turbine damage occurred a t  3.0 seconds after start 
of the test. At 108.0 seconds, cavitation began in the high pressure fuel pump (HPFP) due to  
inlet fuel temperature increases from a propellant transfer process. Through the remainder of the 
test the cavitation conditions worsened as the pump speed was increased to maintain fuel output. 
The ZTO algorithm results, Figure 9, provided an earlier detection time than the ADD algorithm 
results, figure 10. The ZTO algorithm detected the effect that the initial turbine damage had upon 
the relative parameter patterns at different power levels a t  20.92 seconds. The ADD algorithm 
results show severe degradation of the engine error parameter due to  the cavition condition and the 
detection limit was exceeded 158.8 seconds. 

The test objective for test 901-307 was to  determine the minimum upstream pressure that the LPOP 
could operate effectively. During 100% RPL, approximately 6 to  10 seconds into the test, the fuel 
preburner injector experienced a crack in a LOX injector post due to  high cycle fatigue. This test 
continued to  completion although extensive damage was caused by this failure mode. Both the ADD 
and ZTO algorithms were applied to the total sensor set as shown in Figures 11 and 12, and detected 
the engine failure mode after a scheduled power-level transition at  approxima.tely 16 seconds. These 
detections are based upon the relation between the engine’s perforrnances at different power levels. 
The test firing continued until the scheduled cutoff a.t 75.0 seconds. 

Test 901-340 failure was a result of a progressive series of fractures that occurred in the high pressure 
fuel turbopump (HPFTP) turnaround duct. Figures 13 and 14 show the degradation of engine 
performance analyzed by ADD and ZTO algorithms respectively for the fuel-side sensor set. From 
the post-test report, major fractures in the turnaround duct began to occur between 277 and 290 
seconds. Both algorithms indicated engine failure near this time frame, while the actual engine 
cutoff time, initiated by a HPFT discharge temperature redline, occurred a t  405.50 seconds. 
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For test 901-364, a new HPFTP thermal shield retainer nut assembly allowed high temperature 
gases to impinge directly upon the turbine end cap. The hot gases heated up the turbine coolant, 
which heated up the bearings causing increased bearing stiffness and synchronous vibration. The 
cutoff was initiated by the preburner boost pump radial accelerometer at 392.15 seconds after start 
of the test. Figures 15 and 16 show the engine’s response to  the failure mode as evaluated by the 
ADD and ZTO algorithms applied to the fuel-side sensor set. Thoughout the constant power-level 
regions of the test profile, these engine error values continue to degrade and detection of the failure 
mode was made at 45.24 seconds for the ADD and 38.0 seconds for the ZTO, well in advance of the 
controller system. 

For test 901-436, shutdown was initiated by the HPFT discharge temperature redline due to buckling 
of the HPFTP coolant liner. According to  post-test reports, the HPFTP had an abnormally high 
vibrational amplitude from 10 to  213 seconds, then this amplitude began to  decline along with the 
HPFP efficiency. The response by the HPFTP coolant pressure and temperature to the failure 
mode began at 598.5 seconds and cutoff was initiated a t  611.06 seconds due to a HPFT discharge 
temperature redline. The engine error values calculated by ADD and ZTO algorithms for the total 
sensor set are shown in Figures 17 and 18. Both of these values responded to  the continuous HPFTP 
degradation mode and both algorithms detected failure indications well in advance of the responses 
exhibited within the HPFTP coolant liner. The ZTO algorithm detected the failure during the 
abnormally high vibration period at 141.04 seconds. During the decline of the fuel pump efficiency, 
the ADD algorithm detected the failure a t  325.92 seconds. 

For both algorithms, the fuel-side parameter set provided detection more often than the LOX- 
side parameter set. This was due to  the removal of several key parameters from this set, such 
as the HPOT discharge temperature, that had to  be discarded because of their response to venting 
conditions. Improvements to the regression models, that would compensate for the venting condition 
responses would allow inclusion of these pararr?eters and thereby extend the detection capabilities 
of the LOX-side parameter set. 

As shown in Table 3, for the ADD algorithm the ability of the total sensor set to map the performance 
of the entire system appeared to  be as effective as the fuel-side parameter set. While the addition 
of the LOX-side parameters delayed the detection time for some test firings, it improved detection 
times for others. For the ZTO algorithm, the combined parameter set provided detection times 
equivalent to, or better than, those obtained by the fuel-side parameter set. The additional LOX 
parameters improved the pattern analysis capability by providing a more complete response pattern 
of the engine. 

In order to test the robustness of these algorithms to sensor failures, several parameters were removed 
from anomalous test firings to simulate sensor failure and the changes in their detection times were 
observed. Six test cases were conducted upon the total sensor set for three anomalous test firings, 
901-340,901-364 and 901-436, and one nominal test firing. The first test case involved the initial total 
sensor set that  each test firing had available with no additional sensor elimination and resulted in 
detection times identical to  those shown in Table 3. Each subsequent test case included an additional 
sensor eliminated from the total sensor set. The eliminated sensor, in the order of elimination, are 
by PID; 59, 18, 261, 17 and 52. Figure 19 shows the changes in the ADD and ZTO detection 
times for each test case and each test firing. For the nominal test firing, no false alarms were 
indicated for any of the test cases applied. In general, the effect of rliminating sensors degraded the 
detection performance, but several cases showed an improvement in the detection performance of 
the algorithms. Therefore the number of parameters that are effected by the current failure mode 
and are available to the algorithms, dictate the algorithms’ ability to detect that failure. Also i n  
some cases, the affects of the failure mode can be masked by other unaffected normalized-difference 
values in the sensor set. 

Concluding Remarks 

Two algorithms were developed that combined information from several SSME performance param- 
eters into single detectable engine values. These values were then monitored to detect engine failure. 

7 



For eight of the twelve anomalous test firings available, these algorithms demonstrated earlier de- 
tection times than the current SSME safety monitoring system. Of the eight detected anomalous 
test firing, the ADD algorithm detected all eight, while the TI"I' algorithm detected seven of the 
eight. No false alarms were indicated by either algorithm for twelve nominal test firings and both 
algorithms are robust to sensor failure. Both of the proposed multi-sensor algorithms demonstrated 
the safety monitoring features necessary to complement the current SSME safety monitoring system. 

Irrespective of the sensor set, the ZTO algorithm provided significantly earlier detection times than 
the ADD algorithm for several of the detected anomalous test firings. This was because the ZTO 
offered a more complex analysis by quantifying the interrelationships of the parameter responses, 
where the ADD analyzed only the magnitude between the actual and predicted values. One ad- 
vantage ADD has over the ZTO algorithm is the capability to detect a controller-type failure mode 
that occurs during or before startup, such as test firing 901-284. For this type of failure mode, the 
controller was issuing commands based upon erroneous sensor data. If this failure were to occur 
during the mainstage of the test, an overall limit applied to ZTO would have allowed detection of 
the failure. 

Additional training of these algorithms is recommended to ensure that the detection limits do not 
initiate false alarms and yet provide the engine with the optimum detection capabilities. These 
training sets should also include data from both nominal and anomalous SSME test firings. En- 
hancement of the regression models by including affects from venting operations, would provide a 
more accurate perdiction of the performance parameters and allow the two LOX-side parameters 
previously excluded to be analyzed. Additional studies are recommended to optimize the linear 
coefficients in the ADD algorithm and the magnitude of the offset term for the ZTO algorithm. 
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Anomalous 
Test Firing 

Number 

Table 1. Breakdown of the total sensor set into fuel-side and oxidizer-side 
subsets. 

Side Parameter Subset 

287 
32 

225 
226 
52 
58 

260 
261 
23 1 
232 
24 
17 
18 
59 

Controller Reference MCC Pressure 
LPFP Shaft Speed 
LPFP Discharge Temperature Channel A 
LPFP Discharge Temperature Channel B 
HPFP Discharge Pressure 
Fuel Preburner Chamber Pressure 
HPFP Shaft Speed Channel A 
HPFP Shaft Speed Channel B 
HPFT Discharge Temperature Channel A 
HPFT Discharge Temperature Channel B 
MCC Hot Gas Injector Pressure 
MCC Coolant Discharge Pressure 
MCC Coolant Discharge Temperature 
PBP Discharge Pressure 

Oxidizer-Side Se nsor Subsa 

287 Controller Reference MCC Pressure 
59 PBP Discharge Pressure 
93 
94 
90 HPOP Discharge Pressure 
30 LPOP Shaft Speed 
21 MCC Oxidizer Injector Temperature 

PBP Discharge Temperature Channel A 
PBP Discharge Temperature Channel B 

Table 2. Unavailable sensors for each SSME failed test firing listed by 
PID number. 

750-1 68 
901 -1 73 
902-1 98 
901 -225 
902-249 
750-259 
901 -284 
901 -307 
901 -331 
901 -340 
901 -364 
901 -436 

Unavailable Sensors 

58,21 
52,58,231,232 , 1 8,93,94,90,30,21 
21 
231,232,93,94,21 
58 
52,30,21 
226,261,232,18,59 

58,231,232,59 
58,231,232,94,90,30,21 
21 
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Table 3. Results of the application of ADD and ZTO algorithms to the available SSME test Failures. 

An om alous 
Test Firing 
Number 

750-1 68 
901 -1 73 
902-1 98 
901 -225 
902-249 
750-259 
901 -284 
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901 -340 
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901 -436 
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Set 
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184.12 

158.80 
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LOX Side 
Set 

Limit=0.095 

xxx 

8.1 4 
15.84 

xxx 

Total 
Set 

Limit=O.l48 

194.12 

159.40 

8.14 
15.64 

232.80 
279.24 
107.92 
325.92 

a 
Fuel Side 

Set 
Limit=0.05 

75.00 

20.92 

15.64 
232.56 
290.24 
38.00 

177.44 

LOX Side 
Set 

Limit=0.025 

xxx 

88.6 

xxx 

1 
Total 
Set 

Limit=0.05 

75.00 

20.92 

15.64 
64.56 

290.24 
38.04 

141.04 

0 . 0 8 8  0.06 

-0.08 
5% a'!' ''6 5% 5%' ~60' ~6~ tf3y ~ 3 %  26' d' 6 59' 

Parameter Identification Number 

Figure 1, The nominal template utilized at the 100% rated power level 
in the near-zero template solution attempt. 
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Figure 2. The nominal template utilized at the 100% rated power level 
in the zero template plus offset attempt. 
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Figure 3. The zero template plus the offset term correlated to the 
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Figure 6. The ADD algorithm applied to the fuel-side sensor set for 
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Figure 16. The ZTO algorithm applied to the fuel-side sensor set for 
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901 -436. 
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